Sentiment Analysis on Consitutions

By Athina Panotopoulou¹

¹Dartmouth College, Department of Computer Science

Dataset

The Input	labMT
labMT	

The Input	labMT
labMT	

• **labMT** 1.0: a data set of 10222 ranked words.

	The Input	labMT
labMT		

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):

The Input	labMT
labMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter

The Input	labMT
labMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - S000 most frequent words in Google Books

	The Input	labMT	
labMT			

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 3 5000 most frequent words in Google Books
 - **0** 5000 most frequent words in **music lyrics**

	The Input		labMT
labMT			

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 3 5000 most frequent words in Google Books
 - **0** 5000 most frequent words in **music lyrics**
 - 5000 most frequent words in New York Times

The Input	labMT
labMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 5000 most frequent words in Google Books
 - **③** 5000 most frequent words in **music lyrics**
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.

The Input	labMT
abMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 5000 most frequent words in Google Books
 - **③** 5000 most frequent words in **music lyrics**
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.
- The ranking is from 1 to 9: 1 SAD, and 9 HAPPY.

The Input	labMT
bMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 5000 most frequent words in Google Books
 - 5000 most frequent words in music lyrics
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.
- The ranking is from 1 to 9: 1 **SAD**, and 9 **HAPPY**.
- The ranking is the average of all rankings.

The Input	labMT
oMT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - S000 most frequent words in Google Books
 - **③** 5000 most frequent words in **music lyrics**
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.
- The ranking is from 1 to 9: 1 SAD, and 9 HAPPY.
- The ranking is the average of all rankings.

No information about the number of the persons that ranked.

The Input	labMT
оМТ	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - S000 most frequent words in Google Books
 - **③** 5000 most frequent words in **music lyrics**
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.
- The ranking is from 1 to 9: 1 SAD, and 9 HAPPY.
- The ranking is the average of all rankings.

No information about the number of the persons that ranked. No information about the nationality of the persons that ranked.

The Input	labMT
MT	

- **labMT** 1.0: a data set of 10222 ranked words.
- Union of 4 sets (10222):
 - 5000 most frequent words in Twitter
 - 3 5000 most frequent words in Google Books
 - 5000 most frequent words in music lyrics
 - 5000 most frequent words in New York Times
- The ranking of these words obtained from humans using **Amazon's Mechanical Turk**.
- The ranking is from 1 to 9: 1 SAD, and 9 HAPPY.
- The ranking is the average of all rankings.

No information about the number of the persons that ranked. No information about the nationality of the persons that ranked.

Definition

lat

We denote with h(w) the estimate of average happiness for each word $w \in labMT$.

• Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$.

• Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$.

Remove neutral words, to enhance differences!

- Exclude words that their ranking is between $5 \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731

- Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731
- $\Delta H = 2$ Number of words: 1008

- Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731
- $\Delta H = 2$ Number of words: 1008
- $\Delta H = 3$ Number of words: 77

- Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731
- $\Delta H = 2$ Number of words: 1008
- $\Delta H = 3$ Number of words: 77
- Using different subsets of labMT highlight different aspects of our data.

Using subset of the initial word list.

- Exclude words that their ranking is between $5 - \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731
- $\Delta H = 2$ Number of words: 1008
- $\Delta H = 3$ Number of words: 77
- Using different subsets of labMT highlight different aspects of our data.

Example

Use words the have happiness ranking between 7 and 9, highlights the positive aspect of a text.

The Input	Dataset
The Dataset	

	The Input	Dataset	
Т	he Dataset		
	Definition		
	Constitutions: Our data set con	sists of 104 constitutions from	
	89 countries.		

	The Inp	ut		Dataset	
Т	he Dataset				
	Definition				
	Constitutions:	Our data set con	sists of 104 con s	stitutions from	
	89 countries.				

Every file of the data set is a .txt file.

The Input	Dataset
The Dataset	
Definition	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

The Input	Dataset
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries. Every file of the data set is a *.txt* file.

The file name is related to the **country** and the **date**.

Constitutions: $14 \in [1787 - 1898]$; $46 \in [1904 - 1999]$; $44 \in [2000 - 2008]$

The Input	Dataset
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

- \in [2000 2008]
 - Countries that do not exist.

The Input	Dataset
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

- \in [2000 2008]
 - Countries that do not exist.
 - Vocabulary that is different from today.

The Input	Dataset
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

- \in [2000 2008]
 - Countries that do not exist.
 - Vocabulary that is different from today.
 - Every file is written in English, who translated the files?

The Input	Dataset
The Datacet	

allasel

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

```
\in [2000 - 2008]
```

- Countries that do not exist.
- Vocabulary that is different from today.
- Every file is written in English, who translated the files?
- Translation cannot fully transfer the emotions that has the initial word.

The Input	
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

The file name is related to the country and the date.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

- \in [2000 2008]
 - Countries that do not exist.
 - Vocabulary that is different from today.
 - Every file is written in English, who translated the files?
 - Translation cannot fully transfer the emotions that has the initial word.

Example

The word America has different mood for Bosnia and America.

The Input	
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

The file name is related to the country and the date.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

```
\in [2000 - 2008]
```

- Countries that do not exist.
- Vocabulary that is different from today.
- Every file is written in English, who translated the files?
- Translation cannot fully transfer the emotions that has the initial word.

Example

The word **America** has different mood for Bosnia and America. The word **liberal** has different meaning for America and Greece.

The Input	
The Dataset	

Constitutions: Our data set consists of 104 **constitutions** from 89 countries.

Every file of the data set is a .txt file.

The file name is related to the country and the date.

```
Constitutions: 14 \in [1787 - 1898]; 46 \in [1904 - 1999]; 44
```

```
\in [2000 - 2008]
```

- Countries that do not exist.
- Vocabulary that is different from today.
- Every file is written in English, who translated the files?
- Translation cannot fully transfer the emotions that has the initial word.

Example

The word **America** has different mood for Bosnia and America. The word **liberal** has different meaning for America and Greece.
Example "we've", "you've": two distinct words

O Convert all characters to lower case.

Example "we've", "you've": two distinct words

- Onvert all characters to lower case.
- Q Remove special characters such as : .,?-:

Example "we've", "you've": two distinct words

- Onvert all characters to lower case.
- Q Remove special characters such as : .,?-:
- Replace with gaps.

The method	The Algorithm
The Algorithm	

-Load the labMT.

The method	The Algorithm
The Algorithm	

- -Load the labMT.
- -For each Constitution c:

The method	The Algorithm
The Algorithm	

- -Load the labMT.
- -For each Constitution *c*:
 - \bigcirc Create the set of words C that are in the constitution c

- -Load the labMT.
- -For each Constitution c:
 - \bigcirc Create the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.

- -Load the labMT.
- -For each Constitution c:
 - \bigcirc Create the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.
 - We define N as the set of words that are both in C and in labMT: N = C ∩ labMT.

- -Load the labMT.
- -For each Constitution c:
 - **(**) Create the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.
 - We define N as the set of words that are both in C and in labMT: $N = C \bigcap labMT$.
 - For each word w in N we have a rank h(w).

- -Load the labMT.
- -For each Constitution c:
 - \bigcirc Create the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.
 - We define N as the set of words that are both in C and in labMT: $N = C \bigcap labMT$.
 - For each word w in N we have a rank h(w).
 - The ranking of the constitution *c* can then computed by:

- -Load the labMT.
- -For each Constitution c:
 - Oreate the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.
 - We define N as the set of words that are both in C and in labMT: N = C ∩ labMT.
 - For each word w in N we have a rank h(w).
 - So The ranking of the constitution *c* can then computed by: $h_{avg(c)} = \frac{\sum_{w \in N} h(w)f(w)}{\sum_{w \in N} f(w)}$

- -Load the labMT.
- -For each Constitution c:
 - Oreate the set of words C that are in the constitution c
 - O Compute the frequency f(w), for each word w in C.
 - We define N as the set of words that are both in C and in labMT: N = C ∩ labMT.
 - For each word w in N we have a rank h(w).
 - O The ranking of the constitution *c* can then computed by: $h_{avg(c)} = \frac{\sum_{w \in N} h(w) f(w)}{\sum_{w \in N} f(w)}$

We denote by $h_{avg(c)}$ the happiness ranking of each constitution.

For each $\Delta h = \{0, 1, 2, 3\}$:

For each $\Delta h = \{0, 1, 2, 3\}$:

• An .xls file with the rankings for all constitutions:

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

- An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.
- Two Histograms:

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

- An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.
- Two Histograms:

Complete range of h_{avg} from 1 to 9

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

- An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.
- Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

- An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.
- Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

Heatmap:

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

Heatmap:

For each country the ranking of the most recent document.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

Heatmap:

For each country the ranking of the most recent document. Some of the countries do not exist anymore.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

Heatmap:

For each country the ranking of the most recent document. Some of the countries do not exist anymore.

Some of the countries are two small to see on the map.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

• Heatmap:

For each country the ranking of the most recent document. Some of the countries do not exist anymore.

Some of the countries are two small to see on the map.

Rename of some files to be in accordance with the current country naming.

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

• Heatmap:

For each country the ranking of the most recent document. Some of the countries do not exist anymore.

Some of the countries are two small to see on the map. Rename of some files to be in accordance with the current country naming.

Some of the files have not a ranking for $\Delta h = 3$

For each $\Delta h = \{0, 1, 2, 3\}$:

The results

 An .xls file with the rankings for all constitutions: The first column is the name of the country, the second the year, and the third the h_{avg(c)}.

• Two Histograms:

Complete range of h_{avg} from 1 to 9 For the specific Δh from min to max approximately x_{axes} = happiness ranking, $y_{axes} \propto$ number of constitutions.

• Heatmap:

For each country the ranking of the most recent document. Some of the countries do not exist anymore.

Some of the countries are two small to see on the map. Rename of some files to be in accordance with the current country naming.

Some of the files have not a ranking for $\Delta h = 3$

9/14

9/14

10/14

Pearson Correlation Factor

		$\Delta \Pi = 0$			$\Delta n = 3$
Limited Government Powers		-0.13	-0.15	0.09	0.24
Absence of Corruption		-0.10	-0.15	0.01	0.26
Order and Security		0.06	0.01	0.03	0.20
Fundamental Rights		-0.11	-0.16	-0.03	0.16
Open Government		-0.11	-0.16	0.04	0.30
Regulatory Enforcement		-0.19	-0.21	-0.04	0.27
Civil Justice		-0.18	-0.19	-0.03	0.20
Criminal Justice		-0.07	-0.02	0.1	0.20
What it means:					
Correlation	Negative	Positive			
None	-0.09 to 0.0	0.0 to 0.09			
Small	-0.3 to -0.1	0.1 to 0.3			
Medium	05 ± 03	03+005			

 $\Lambda \sqcup = 0$ $\Lambda \sqcup = 1$ $\Lambda \sqcup = 2$ $\Lambda \sqcup = 2$

 Medium
 -0.5 to -0.3
 0.3 to 0.5

 Strong
 -1.0 to -0.5
 0.5 to 1.0